
SEPP – Software Installation and Sharing System

Tobias Oetiker <oetiker@ee.ethz.ch>
Department of Electrical Engineering

Swiss Federal Institute of Technology, Zurich

September 28, 1998

Abstract

SEPP is an application installation, sharing and packaging solution for
large, decentrally managed Unix environments. SEPP can be used with-
out making modifications to the organizational structure of the partici-
pants’ servers. It provides consistent application setup, documentation,
wrapper scripts and usage logging as well as version concurrency and clean
software removal. This paper first gives an overview of products already
available in this field and then goes on describing SEPP.

Motivation

The Swiss Federal Institute of Technology in Zurich (ETHZ) has a fairly large
installation of Unix workstations. At the Department of Electrical Engineering
alone, there are more than 400 workstations in operation. Most laboratories in
this Department have their own system managers and file servers. The advan-
tage of this distribution of responsibilities is that management happens close
to the users. The disadvantage is that it leads to a multiplication of efforts in
respect to software installation and system configuration.

In an education and research environment, the diverse user population re-
quires a large variety of software packages in their day-to-day work. These range
from little utilities to large applications taking up several GB of disk space. The
IT Support Group (ISG) of our department, for example, maintains a software
base of over 40 GB.

The ISG started the SEPP project with the intention to devise a software
installation system which allows system managers to collaborate closely while re-
taining independence between the different laboratories. For the users it should
bring better service by providing structured documentation on all applications,
several versions of the same applications available in parallel and immediate
accessibility for all applications without the need to alter .login or similar
files.

Existing Solutions

Application installation and packaging has been an issue for years. Many solu-
tions have been proposed and implemented. Some are mainly concerned with
package installation and have no special support for networked environments:

1

The RedHat Package Manager by RedHat Inc. [1] is the most widely used
package manager in the Linux world. It is geared towards setting up soft-
ware packages on stand-alone workstations, much like the SVR4 package
manager. In addition to this, it provides all the means for distributing
software in source format, ready for fully automatic compilation and in-
stallation on the target system.
The Redhat Package Manager (RPM) does not impose any restrictions
on package layout. Files from a package will be placed into the filesystem
wherever the package author sees fit. RPM keeps track of the installed
software in a database.

GNU Stow by Bob Glickstein [3] is basically a link generator. The idea
behind stow is to put every application into its own subdirectory tree
and then generate symbolic links into /usr/local/. Stow’s special abil-
ity is to optimize these links. If only one application provides files in
/usr/local/include, the whole directory will be linked. Once a second
package is installed which also provides files for /usr/local/include,
stow replaces the symbolic links to a directory with a symbolic link for
each include file.
In an environment with many packages this link optimization feature will
not help much as most directories will be used by several packages anyway.

The Pack Project by Peter Krisensen [2] is also based on the idea of installing
each software package into a separate subdirectory and making the binaries
available in a central bin directory using symbolic links. A special feature
of Pack is that Peter Krisensen maintains a substantial public collection
of ‘Pack’ packages at Sunsite Denmark.

Other solutions have been developed with a networked environment in mind:

Xhier from the Math Faculty Computing Facility, University of Waterloo [4]
is a complete software distribution and maintenance system. It provides
highly automated means for compiling and distributing software in a cam-
pus setup. Xhier requires applications to be organized into packages of
related software. These packages can then be distributed to a number of
workstations organized in a tree structure. To provide easy access for the
user, all relevant files are linked into a common directory tree.

One major obstacle to the success of Xhier outside of University of Wa-
terloo is that Xhier is not publicly available due to license restrictions.

CMU Depot by Wallace Colyer and Walter Wong [5] is the Unix System
Configuration Management component of the Workstation Administra-
tion/Host Configuration Andrew II project. CMU Depot puts an empha-
sis on sharing applications across the network. It was developed for an
AFS environment, but works with NFS as well. Applications are orga-
nized into Collections of related software, each living in its own directory
tree. Users are provided with a central directory containing symbolic links
to the application binaries.

Depot-Lite by John P. Rouillard and Richard B. Martin [9] is a mechanism
for managing software which is designed to be light weight, easy to learn,
and to provide support for multiple installed versions of a package.

2

ASIS by Ph. Defert, E. Fernandez, M. Goossens, O. Le Moigne, A. Peyrat,
I. Reguero is the Application Software Installation Server developed a
CERN. ASIS is in use at CERN and other High Energy Physics Research
Centers around the world. All ASIS sites work together by storing their
software packages in one central repository, from where copies are made
to second level servers. From there the software can either be copied
to local machines or accessed directly via NSF or AFS. Installing ASIS
packages is a particularly simple process by means of a GUI. Software
is made available to the end-users through symbolic links written into a
central binary directory. The system manager of each participating client
can decide which versions of which package to install locally.

LUDE by David Lebel, Duncan Fraser and Michel Dagenais [8] is the dis-
tributed software library developed at the University of Montreal. LUDE
allows a distributed setup without central control. The local system man-
ager can choose for each package if it should be run over the network or
copied to the local system. Participating systems can be both client and
server. Each software package is kept in a separate subdirectory. The users
access packages through a binary directory from where links point to the
binaries of the individual packages. Packages themselves are highly struc-
tured to allow the setup of packages which work on multiple platforms.
Management of the system is performed through a single command-line
tool.

UPS by William Bliss, Jonathan Streets, Lourdu Udumula, and Margaret
Votava is the UNIX Product Support and Distribution toolkit developed
at Fermilab for the management and access of software products on local
systems by the system administrators and users. UPS supports multiple
concurrent versions of the same product available on the same machine.
End users have to use a special setup program to prepare their account for
each software package they want to use. Inter-package dependencies are
resolved automatically when running the setup command. Each package
is assigned a status like current, new, test, development or old. The
users can use these status labels to choose packages on a maturity level.
Information about the available packages is maintained in an external
database in the form of a special directory tree.

None of these packages addressed all our local requirements. Most packages
were rather large compared to what we had in mind, and none supported wrap-
per scripts1 A mix of features from the packages mentioned above plus some
local ideas, however, provided a suitable software installation and sharing sys-
tem for several Departments of the Swiss Federal Institute of Technology. We
called this system SEPP.

SEPP Overview

SEPP is a package based software distribution system. Figure 1 shows the major
components of a SEPP installation. Two packages are installed in this example.

1Wrapper scripts are explained in the next section.

3

� � �������
	�� ��������

��� � � � �
� �����������
�! "�#�

� � �$����� �

� ��%���� &������(')+*���,)+��-�-��$.�� ��/�)

*��$0���� 1���2�2�� 3����4�

��� �

� ��%$��� &������+')(*��$,)(-���%$/5)

������,��(� -��

�6 �7�7

%�����8��� �
� � ������� � �$0�-�-�� %$����8

����*��

� � �$����� ���5�
	9� ��
� � ������� ���5�
	�� �������� ��*�������0�-�-�:�� ��.�� ,�0�%$�

; ���

� ��%���� &������(')(*���,)(�$0�-�-

&�� ; �

� � �����5�
	�� ��������
*���0���� 1$��2�2�� 3������

�������

�����

������')(*��$,)(��� <�.�� ��/�)

� � �$���5�
	9� ������4�

=(>�? @BA C�DD�E$FG> FGE�A D�H E�A DI>�?

J
K L�MON�MQP�R�MBS
T

U V WIX Y X
V[Z W \^][_ `[a `][b _

cdL�TBeBK fgN�MhP$R5MBSBT

i W V jlk
m U[n i

@QoBFqpIC�r A s�r A D5t

Figure 1: Components of SEPP

• Every software package is installed into a separate subdirectory providing
clean encapsulation of all files belonging to the same product.

• Every package contains a special directory called SEPP. This directory
holds a few files describing the contents of the package, as well as a startup
wrapper script (start.pl).

• This wrapper script is responsible for preparing the environment for suc-
cessful execution of the binaries contained in the package. Whenever a
program which was installed with SEPP is started, the program does not
get executed directly, it is rather the wrapper script of the package which is
called and, after preparing the environment, runs the requested program.

• Packages are made available on the local machine using the automounter.
The package directories are always mounted below /usr/pack. This en-
sures that software which relies on compiled-in absolute path names finds
its files.

If a package is available from several places, the automounter map is con-
structed to use alternate sources for the package if the primary server is
not responding.

• The packages’ binaries are made available to the end-users trough symbolic
links in the /usr/sepp/bin directory.

• These links do not point directly into the package directories, but to stub
scripts stored in /usr/sepp/stub. SEPP generates one stub script for
each package it installs. Stub scripts are written in Perl and are responsible
for running the package’s
/usr/pack/package /SEPP/start.pl file. The stub and the start.pl file
together make up the wrapper script of the package mentioned above.

4

• Package names are built from 3 components:

1. The name of the package

2. The version number of the package

3. A shorthand for the name of the package maintainer

This ensures that package names are unique and everything can be mounted
under /usr/pack.

Starting from this setup, SEPP adds many convenient features both for the
users as well as for the administrators of packages.

User Features

While it is good for system managers to have a clean and well organized software
setup on their servers, the user’s comfort must be the prime objective. The main
user-visible feature of SEPP is therefore ease of use:

• To use an application installed under SEPP, no changes to .login, .cshrc
or .profile are required, apart from adding /usr/sepp/bin to the PATH
variable. The /usr/sepp/bin directory contains symbolic links represent-
ing all installed applications. Each program is started through a wrapper
script which prepares the environment according to the requirements of
the program. This includes choosing the appropriate binary in a multi-
architecture environment, setting special environment variables or creating
configuration files before the program is run for the first time.

• Documentation about all the locally available packages is provided on a
web site and, where possible, also as manual pages. By design, SEPP
forces the system manager to provide at least a minimal amount of struc-
tured documentation to be present in a package which is then used to
automatically generate a documentation web site.

• SEPP supports the installation of several versions of the same package
concurrently. The user can start the default version of a program by us-
ing the plain program name, while other versions are available through
program-version . This means, for example, that Emacs 20.2 is started
by using the command emacs . But version 19.23 is also available to users
who start it with emacs-19.23 . If two administrators are maintaining
emacs-20.2 packages and set them up differently, both packages can be
installed concurrently on the same system. The versions are then distin-
guished by a second suffix to the executables, based on the names of the
two persons maintaining the packages. The system manager of each sys-
tem can decide which package and version is the default and is started by
typing emacs .2

2The wrapper script mentioned above takes care of removing the version number from
ARGV[0] so that applications which depend on being called a certain name work as expected.
prior to calling the binary. The wrapper also adjusts the PATH variable so that the program
finds the correct version of any companion programs it might call during operation. For emacs
this means that it would always use the version of movemail which was installed together with
the particular version of emacs.

5

Management Features

The users can only benefit from SEPP’s features if the system managers actually
provide applications through SEPP. Therefore much effort was spent on making
SEPP easy to use from the system managers point of view:

• SEPP is primarily an organizational measure. It does neither require any
special daemon processes nor root privileges to work. Installing SEPP
does not require altering the whole system setup. It takes only about 15
minutes to set up SEPP on a server, plus some additional time to update
the clients’ automounter maps and syslog configurations.

• A Perl script called seppadm is provided, which simplifies the maintenance
of SEPP packages. The seppadm tool sets up skeleton installation trees
for new packages and installs and removes SEPP packages from a server.
Furthermore the seppadm tool ensures that no name clashes occur when
installing a SEPP package. This is done both for stock OS binaries as
well as other SEPP binaries. If clashes occur with other SEPP packages,
the administrator can define whether or not the new package overrides old
binaries and manual pages. Because of the elaborate naming scheme for
binaries, this mechanism provides an ideal test bed setup for new versions
of a package. While the previous version of the binary remains available
under the normal name, the new version can be accessed by appending
the version number to the binary’s name.

• The automounter is used to mount all package directories below /usr/pack.
This makes the physical location of a package directory irrelevant. A
package can be stored on any partition of the local machine or on a re-
mote server. The application binaries still appear to be installed under
/usr/pack/package . This even fools setup programs of commercial ap-
plications which use pwd to determine their installation directory.

• Every SEPP installation maintains a catalog file listing all packages stored
locally, together with their NFS pathname and a short description. SEPP
can be configured to use catalog files from other servers to gain access to
all their locally installed packages. This allows several SEPP servers to be
tied together without requiring central management.

• A package can specify a list of other packages which are required before it
can be installed. In general, however, it is preferable when a package con-
tains all the tools and libraries it needs to run. This takes some additional
disk space but is much simpler to maintained than multiple packages all
cross-linked together. In our experience this policy usually does not lead
to a significant growth of package size.

• The application wrapper scripts mentioned above allow the package main-
tainer to take any action required to make the application work, just prior
to launching the program binary, without making the end-users edit their
.login file. This cuts down support time because programs “Just Work”.

• The wrapper scripts automatically log application usage through syslog .
This allows to track application usage by configuring the syslog daemons
on all clients to forward their messages to a central logging server.

6

• Some applications have configuration files which must be adjusted to the
local environment. SEPP can handle this problem by copying part of
the package’s directory tree to /usr/sepp/var/package which is a local
directory on every SEPP server. The application itself has to be configured
to pick up its configuration file from /usr/sepp/var/package .

Using SEPP

The following sections gives a brief example of how to create and install a SEPP
package called lisa-12.98-to using the seppadm tool.

First a word on the terminology used in this section:

Package Preparation is the first step to make an application available within
a SEPP setup. It involves using the seppadm tool to create a skeleton
package directory, downloading and compiling the software, installing the
software into the skeleton directory and finally updating the files in the
package’s SEPP directory to fit the application.

Package Installation makes programs contained in a SEPP package visible in
the /usr/sepp/bin directory and therefore available to all the users who
have this directory in their PATH variable. When installing a package, it
does not matter if the package is stored on the local system or on a remote
server as all file access is governed by a single automounter map. A new
package only becomes visible to remote sites after it has been installed
successfully on the site where it has been prepared.

Package Mirroring allows the system manager to make a local copy of a
package which has been installed from a remote server.

Creating a SEPP package

1. seppadm prepare lisa-12.98-to creates a skeleton application instal-
lation directory and updates the automounter map to make the directory
available as /usr/pack/lisa-12.98-to. The physical location of the in-
stall directory is chosen automatically from a list of possible locations by
selecting the location with the maximum available disk space. The list
of storage locations has to be configured when installing the SEPP base
package. It is also possible to give an absolute location when creating a
package directory.

2. After downloading and unpacking the source, it can be compiled. Assum-
ing the example package uses autoconf, compilation is very simple:

./configure --prefix=/usr/pack/lisa-12.98-to
make; make install

This configures, compiles and installs the program into the new package
directory. The only change necessary to the standard compilation proce-
dure is the use of the --prefix argument to guide the program into the
right directory and prevent it from being installed into /usr/local/bin

where it would usually go.

7

3. The seppadm command in the first step copied several template files into
/usr/pack/lisa-12.98-to/SEPP/. These files must now be edited to fit
the application:

INSTALL contains a detailed description of the steps necessary to com-
pile and install the package.

META is a structured text file with information about the package. It in-
cludes a one-line description of the package, the addresses of the local
package maintainer and support staff, and pointers to the package’s
binaries and documentation. The seppadm tool reads this file when
installing a package or when regenerating the SEPP documentation
web site.

README is a brief description of the package. It may include informa-
tion about local changes, solutions to frequent problems, . . .

CHANGES lists all changes which were done to the package after initial
installation within SEPP.

patches is a subdirectory where patches are stored which were necessary
to get the package to work.

start.pl is the wrapper script for the application. In the simplest case
it will just contain the line AppRun "bin/". More problematic soft-
ware products may require the setting of environment variables or the
creation of per user configuration files. When a user starts an appli-
cation installed under SEPP, this script will always be run before the
actual application binary is executed.

Installing a SEPP package

seppadm install lisa-12.98-to makes the package available on the local
server. Every user who has /usr/sepp/bin in the PATH can now access the
lisabin , lisabin-12.98 and lisabin-12.98-to programs.

Mirroring a SEPP package

Remote system managers can not only install the application, they can also
make a mirror copy of it, using seppadm mirror lisa-12.98-to to ensure
maximum performance and availability.

Other functionality of seppadm

Apart from the basic functions shown above, seppadm can also build a web site
which lists all the applications installed locally (webbuild), as shown in Figure
2. Further there are functions to retrieve a listing of all applications (report)
available from remote sites, for updating the local mirrors (mirrorupdate) and
for removing old package (remove).

Real World

As explained in the “Motivation” section, SEPP had to be an easy-to-use, dis-
tributed solution in order to gain acceptance within the labs. During the devel-

8

Figure 2: SEPP generated Documentation Web Site

opment phase of SEPP, the ISG kept close contact with managers from various
labs of the department. An early design document was distributed to get feed-
back on the proposed design and features. This had the double benefit of getting
people interested in the project and tidying up the design before it was even
implemented. Once the first release of SEPP was available, the ISG started
to install all new software under SEPP. This soon led to a substantial amount
of packages being available. There was a lot of interest when talking about
SEPP with the lab system managers. In most cases though it was the need to
get access to some new software package from the ISG server which led to the
installation of the SEPP base package on a lab server.

SEPP offers the possibility to transparently mirror a package to the local
server, to enhance availability of the package as well as to reduce load on the
network. Comparing the number of packages which are mirrored to the number
of packages which are just cross-mounted between servers, shows that most
system manages prefer to keep local copies of smaller packages while software in
the > 1GB class is mostly cross-mounted. This might change in the future once
the “switched 100 Mbit to the desktop” plan of the ETHZ is put into practice.

Future Directions

SEPP was designed to work without external databases apart from a text file
listing the packages physically available on the local server and the automounter
map. All other information is taken directly from the SEPP directory inside each

9

package. With an increasing number of packages installed, the processing of this
information can take a considerable amount of time. A future version of SEPP
might use a cache file with pre-processed information, which has only to be
updated when the CHANGES file of a package has been altered. Performance is
not yet a problem in our setup. With 90 packages installed it takes 15 seconds
to regenerate the whole documentation web site on the ISG’s Ultra Enterprise 2
+ SSA server. This includes analyzing all packages and writing out a web page
for each one.

The current implementation of SEPP works best for user applications which
are not required to successfully boot a machine. Daemon processes can be pro-
vided as SEPP packages as well, but because of the transparent automounting
feature, this could lead to unintended dependencies between different servers. In
the worst case, this could make it impossible to boot when two machines crash
at the same time while depending on packages from each other. To prevent this
problem from occurring, a feature will be added to SEPP which enforces that
crucial packages are always mirrored to the local server.

With a number of sites using SEPP, it has become difficult to add major new
features to the system as packages are cross mounted between different servers.
One idea to alleviate this problem would be to have version numbers for the
package format and make the administration script check these before installing
a package. If the version number of the package format was higher than the one
handled by the administration script, the system manager would be offered to
retrieve a new version of the administration script.

At the Swiss Federal Institute of Technology, SPARC/Solaris is by far the
most widely used Unix platform. Therefore it has been the SEPP system’s
primary target. The overall design of the SEPP system takes multi-platform
capability into account, and it is successfully being used in a mixed Solaris/Irix
environment, but running it in a really mixed environment with other than
SVR4 based Unix variants would be an interesting test for the systems design.

Conclusion

The potential productivity and quality of service provided by the system man-
agers of the department was increased both because more applications are avail-
able to the users in a consistent setup and because the individual system man-
agers can devote more time to direct user support and conceptual work. This
in turn also leads to a better quality of life for the system administrators and
thus generates a positive feedback loop.

Acknowledgments

I would like to thank my fellow system managers Elmar Heeb, Andi Karrer,
Christoph Wicki, and Fritz Zaucker at the Swiss Federal Institute of Technology
for the feedback during the design process and beta testing of the final product.
And last but not least I would also like to extend my gratitude to Larry Wall
for creating Perl.

10

Availability

The SEPP base package as well as details about the SEPP mailing-list are
available from
http://www.ee.ethz.ch/sepp/. SEPP is distributed under the terms of the
GNU General Public License.

Author Biography

Tobias Oetiker got a Master’s degree in Electrical Engineering from the Swiss
Federal Institute of Technology, Zurich (ETHZ) in 1995. After working for one
year at De Montfort University in Leicester, UK doing Unix system manage-
ment, he returned to Switzerland and has since been employed by the Depart-
ment of Electrical Engineering of the Swiss Federal Institute of Technology as
a toolsmith and system manager.

What is in a Name

In case you have been wondering what SEPP stands for, I must disappoint you:
It is not an acronym. Sepp is a Swiss and Austrian short form for Joseph, and
one might have the image of an old mountain farmer in mind when hearing the
name. Maybe a future successor to SEPP will be called HEIDI.

11

References

[1] RedHat Inc. RedHat Package Manager
http://www.rpm.org

[2] Peter Krisensen. Pack Distribution Project
http://sunsite.auc.dk/pack/

[3] Bob Glickstein. GNU Stow application installer.
http://www.gnu.ai.mit.edu/software/stow/
stow.html

[4] John Selens. Software Maintenance in a Campus
Environment: The Xhier Approach. LISA V -
Sept. 30-Oct. 3, 1991.

[5] Wallace Colyer and Walter Wong. The CMU
Depot Project
http://andrew2.andrew.cmu.edu/depot/

[6] Anne Heavey. UPS and UPD v4 Reference Manual
http://www.fnal.gov/docs/products/ups/

[7] Ph. Defert, E. Fernandez, M. Goossens, O. Le
Moigne, A. Peyrat, I. Reguero. ASIS Application
Software Installation Server
http://wwwcn.cern.ch/dci/asis/

[8] David Lebel, Duncan Fraser, Michel Dagenais.A
Distributed Software Library
http://www.iro.umontreal.ca/lude2/

[9] John P. Rouillard and Richard B. Martin.
Depot-lite: A mechanism for managing software.
In LISA VIII Proceedings, pages 83-91, 1994.

12

http://www.rpm.org
http://sunsite.auc.dk/pack/
http://www.gnu.ai.mit.edu/software/stow/stow.html
http://www.gnu.ai.mit.edu/software/stow/stow.html
http://andrew2.andrew.cmu.edu/depot/
http://www.fnal.gov/docs/products/ups/
http://wwwcn.cern.ch/dci/asis/
http://www.iro.umontreal.ca/lude2/

