
SEPP

Software Packaging System

Tobias Oetiker
Department of Electrical Engineering
Swiss Federal Institute of Technology

December 9, 1998

Contents

1 Motivation 2

2 Goals 2

3 Existing Solution 3

4 SEPP Features 4
4.1 User visible Features . 4
4.2 Making the System Managers happy 4

5 Implementation 5

6 SEPP Setup 6

7 Using seppadm 7
7.1 Preparing a SEPP package . 8
7.2 Installing a SEPP package . 9

8 Package compilation tips 9
8.1 Use only standard system binaries 9
8.2 Shared library search path . 10
8.3 Avoid name clashes . 10
8.4 configure . 10
8.5 Access Control . 11

A The seppadm Manual Page 11

B SEPP System File Examples 13
B.1 /usr/sepp/conf/sepprc.system 13
B.2 /usr/sepp/conf/sepp.conf . 14

1

C Package Config Files 16
C.1 /usr/pack/fileutils-3.16-to/SEPP/INSTALL 16
C.2 /usr/pack/fileutils-3.16-to/SEPP/CHANGES 16
C.3 /usr/sepp/conf/template/README 16
C.4 /usr/sepp/conf/template/META 17
C.5 /usr/sepp/conf/template/start.pl 20

D SeppStart.pm Manual Page 21

1 Motivation

The Swiss Federal Institute of Technology has a large installation of Unix work-
stations. At the Department of Electrical Engineering alone, more than 400
workstations are in use.

Most laboratories in the Electrical Engineering Department have their own
system manager and file server. There are about 16 system managers responsi-
ble for 12 server. The advantage of this setup is that the management happens
where the customer is located. The disadvantage is, that it leads to a multipli-
cation of efforts in respect to software installation and system configuration.

In an education and research environment, the users require a large variety
of software packages in their day to day work. These range from little utilities
to large applications taking up several GB of disk space. The IT Support Group
of the department alone provides software with a total size of over 40 GB.

The IT Support Group of the Department of Electrical Engineering has
started the SEPP project with the intention to devise a software installation
system which allows close collaboration between the system managers while
retaining maximum independence between the different laboratories.

2 Goals

The project had five main goals:

Package Separation Each software package should be installed in its own
subdirectory. This helps keeping the system setup clean because it is
always clear to which package certain files belong.

Simple to Use Every software package should be immediately available to the
user without any explicit setup action. For that purpose the binaries have
to be made available in one central bin directory and the program itself
has to take care of preparing its own environment.

Simple to Maintain A system manager participating in SEPP should not
be required to completely alter the setup of her system nor should the
creation and installation of new packages be inherently more difficult or
time consuming than without SEPP.

Distributed Organization The system should allow to share packages be-
tween the participating systems, either by copying them or by accessing
them via NFS.

2

Heterogeneous Systems Although Sun SPARC Solaris is the dominant ar-
chitecture and OS within the department, the solution should work in a
heterogeneous Unix environment as well.

3 Existing Solution

A review of existing solutions found four products, but each only partly achieved
to satisfy our needs. All four are based on the idea of keeping software packages
in separate directories.

Pack Distribution Project by Peter Krisensen. Pack filled many of the re-
quirements, but in the end, the emphasis on the package distribution was
too strong. No real support was given for efficiently sharing an installed
package via NFS across several systems running off different servers.
http://sunsite.auc.dk/pack/build-package.html

GNU Stow by Bob Glickstein. Stow is a Perl program which basically takes
care of efficiently setting up symbolic links in the /usr/local tree pointing
to directories and files contained in a package directory. While Stow is
very sophisticated in doing this, it lacks other important features such
as a concept for collaboration between different Stow systems running
Stow. The impression was that Stow is designed for consultants who have
to setup a workstation, for a customer. The customer wants a number
of additional packages, apart from the plain vanilla OS, installed on his
computer. Stow has all the means of doing this perfectly without requiring
the use of pkgadd and friends.
http://www.gnu.ai.mit.edu/software/stow/stow.html

The Depot Configuration Management Project by Wallace Colyer and
Walter Wong. The Depot Project is the Unix System Configuration Man-
agement component of the Workstation Administration/Host Configura-
tion Andrew II project. Although the whole system sounds impressive and
extremely well thought trough, the author was put off by its complexity.
http://andrew2.andrew.cmu.edu/depot/

SFI Director by Peter B. Stevens. This is a commercial system management
package which also includes application distribution facilities. Director
is a complete management solution written mostly in TCL. Some of the
concepts like auto-mounting of packages and distributed setup were very
interesting. But the overall package is built on the assumption that you
either use it completely or you do not use it at all, which was in conflict
with the requirements.
http://www.sfi.ch/cstools/appmgmt.html

3

http://sunsite.auc.dk/pack/build-package.html
http://www.gnu.ai.mit.edu/software/stow/stow.html
http://andrew2.andrew.cmu.edu/depot/
http://www.sfi.ch/cstools/appmgmt.html

4 SEPP Features

Building on the goals stated in section 2, a more detailed feature list is presented
below.

4.1 User visible Features

The main user visible feature of SEPP is ease of use. This means:

• No changes to .login or .cshrc are required to use any of the applications
installed under SEPP, except the addition of /usr/sepp/bin to the PATH
variable. Wrapper scripts do everything necessary to prepare the system
for successful execution of the programs the user wants to run.

• Documentation about all the installed packages is provided in a www-
ready form and where available also as manual pages. Part of this doc-
umentation is generated automatically from information present in each
package directory. The SEPP tools will actually refuse to install a package
which doesn’t have at least minimal documentation.

• Version concurrency is ensured by providing an elaborate naming scheme
for application binaries. The user can start the default version of a pro-
gram by using the plain program name, while older versions are available
through program-version . This means, for example, that Emacs 20.2
gets started by using the command emacs . But version 19.23 is also avail-
able to users who start it with emacs-19.23 . This concept was taken even
further, by adding a suffix for the maintainer of the package. If two people
are maintaining perl-5.004 4 packages and set them up quite differently,
both packages can be installed concurrently on the same system. The end
user can pick one of them by using the command perl-5.004 4-ew or
perl-5.004 4-gk to explicitly pick one version or the other. The system
manager on the other hand can decide which package and version is the
local default and gets started by typing perl .

4.2 Making the System Managers happy

Much effort was spent on making life for the system manager as easy as possible:

• Through the use of automounting, all applications appear to be installed
under /usr/pack/package while the physical location can be anywhere
on the local server or a remote machine.

• The SEPP installations on several servers can be linked to provide trans-
parent application sharing. Even mirroring of applications is supported.
This allows to fine tune redundancy for each application level. All this is
transparent to the end user, as every SEPP package appears to be local.

• Each package is installed in its own directory, keeping it separate from
other packages. The only SEPP specific element in this directory is a
subdirectory called SEPP. The SEPP subdirectory contains some text files
with meta information about the package and a startup wrapper script.
These files have to be edited to fit package.

4

• A package handling script is provided, which helps to create new packages,
to install existing packages on the local server, to build a web site contain-
ing information on the installed packages, to remove existing packages,
and to generate a list of all packages available within the network.

• Full usage logging for all SEPP applications is provided through syslog .
This allows to see which applications are actually in use and thus helps in
deciding which ones can be uninstalled.

• Even though package directories are shared read-only, an application can
be configured differently on each server if this is necessary. SEPP packages
can contain symbolic links pointing to /usr/sepp/var/package plus a
template directory which is copied to this location at installation time.
The /usr/sepp/var/ tree must be exported read-write to all the clients
of the local server. This setup allows to install packages like TeTEX which
need to write font files to a central directory, or commercial packages which
need a local license file. More information on the licensing issue can be
found in section 8.5.

5 Implementation

When implementing SEPP, the author tried to work as much as possible with
services and utilities which are present on an ‘out of the box’ Unix. A few ex-
ternal tools like Perl, TC-Shell and GNU cp were used, copies of these programs
come with the SEPP base package and are installed in a special directory, to-
gether with the SEPP administration tool seppadm . The normal users will not
note their presence.

The following section shows what happens when a user starts a SEPP ap-
plication:

1. The user has put /usr/sepp/bin into her PATH variable and types gls 1

into her shell.

2. The shell finds /usr/sepp/bin/gls which is a symbolic link pointing to
/usr/sepp/stub/fileutils-3.16-to.

3. fileutils-3.16-to is a tiny Perl script whose purpose is to load and
run /usr/pack/fileutils-3.16-to/SEPP/start.pl , the actual startup
wrapper for gls and all the other tools in the fileutils package. The inter-
mediate step through the stub file prevents the system from automounting
all application directories on every rehash, as the symbolic links do not
point directly to the start.pl files. The implementation of the stub
file uses Perl’s do command so that the Perl just reads and executes the
contents of start.pl without an expensive exec or system call.

4. In start.pl the environment is prepared for the execution of gls . In the
case of gls this is a very simple task because gls runs “out of the box”.
Depending on the application it might be necessary to set, for example,
LD LIBRARY PATH, ELMHOST or PATH to special values to run the application

1SEPP does not allow to install applications with names that mask “official” OS binaries.
Therefore GNU ls is called gls

5

successfully. Even certain configuration files may have to be copied into
the users home directory if the application is started for the first time.

If a package is to be run on different architectures, the startup wrapper
has to make sure that it starts the correct binary for the architecture.

5. When the application terminates, the wrapper script will generate a syslog
event telling how long that application has been running and what its exit
code was. For long running applications like daemons it might not be of
interest to know how long they have been running, especially not at the
expense of having a Perl interpreter hanging around in swap space all the
time. It is therefore also possible to generate the log before the actual
application is started, loosing the runtime information, of course.

6 SEPP Setup

Before SEPP can be used on a system, the SEPP base package must be installed
and a few files have to be edited. While installing the base package requires root
permissons, using SEPP does not. The use of a special user account (local) for
installing applications is strongly recommended. Here is a little cookbook2:

1. Create a directory called /usr/sepp. If using a Solaris autoclient setup,
you might want to create the SEPP installation directory in a different
location and just put a symbolic link into /usr to avoid getting problems
with the demand-const mounted caching file system on the client side.

2. Get the latest sepp-base and the sepp.sbin apropriate for your archi-
tecture. Unpack these archives within /usr/sepp.

3. Touch the /usr/sepp/conf/autosepp indirect file.

Solaris: Prepare the automounter by updating /etc/auto master to in-
clude the line:

+/usr/sepp/conf/autosepp_master

This has to be done on the server as well as on each client running
of the server. If the /usr/sepp tree itself resides on an automounted
partition, make sure to run automount somewhere in /etc/rc3.d.
The autosepp master contains a reference to autosepp indirect.
On Solaris, this indirect map has the advantage, that changes to the
map become active immediately on all the clients. No automounter
reload or restart is required. On other automounter implementations
this may have to be solved differently.
Activate the new configuration by running automount -v .

DEC Unix (osf1): Add the contents of /usr/sepp/conf/autosepp master
to your /etc/auto master and restart the automountd .
(please mail me if you have a more verbose explanation for what is
necessary to get SEPP to work on DEC OSF1)

2As SEPP is being developed in a Solaris Environment this cookbook is partly Solaris
specific. Systems like the automounter or autoclient may operate differently on other Unixes.
Also the three binaries perl , gls and tcsh will have to be replaced on a different architecture.
As these programs are widely available this should not pose a problem.

6

4. Update /etc/syslog.conf on the server to enable SEPP logging.

write SEPP log to a local file
local4.info /var/log/sepp.log
send log events to a central logserver
local4.info @sepp.ee.ethz.ch

You can write the log entries to a local file, but more efficiently you send
them to your local server and there forward them to the central SEPP
logging server. In our local setup, the central logging server for SEPP is
called sepp.ee.ethz.ch. The central logging allows collection of statistical
information on application usage across the whole network.

Add the following line to your clients /etc/syslog.conf to make them
forward their SEPP syslog events to your local server.

send log events to the local server
local4.info @local-server

5. Customize /usr/sepp/conf/sepprc.system to reflect your local setup.
The seppdomain variable can be set to whatever you think is a descrip-
tive name for the computers running of your local server. Please check
appendix B.1 for an example of this file.

6. Edit /usr/sepp/conf/sepp.conf to match your system. There are com-
ments in the file explaining the individual entities. In appendix B.2 there
is an example sepp.conf file. Make sure to do a touch on your future
pack-list, as seppadm will otherwise complain when you try to run it.

7. Finally make the directory /usr/sepp/html available on your web site. As
this directory will contain documentation about all your SEPP packages.
Once you have some packages installed you can run seppadm webbuild to
populate this directory. You have to run seppadm webbuild every time
new applications get installed, to update SEPP WebPage.

7 Using seppadm

Making a new application available to the end user on a SEPP system is a two
step process: The first step is called “package preparation” the second stage
is called “package installation”. The preparation step takes some extra work,
compared to a normal application installation because SEPP requires to write
a startup wrapper and to provide some documentation. The install step on the
other hand is very simple.

If several system managers have linked their SEPP installations, every ap-
plication available on any of the participating servers can be installed locally
with a single command, regardless on which server it is physically located.

To make using SEPP as simple as possible the seppadm tool is provided.
seppadm is a Perl script, with a number of functions which help the system
manager to administrate the SEPP installation. The following sections gives a
short introduction about how to use the seppadm script. Appendix A shows
the complete manual page of this tool, explaining all the options.

7

7.1 Preparing a SEPP package

This section gives an illustration of the package preparation process based on
the installation of the GNU File Utilities. First the directory for the package
has to be prepared. This is done with

seppadm prepare fileutils-3.16-to

which picks the file system with the most free space, creates a directory and
configures the automount map to make this directory available as as
/usr/pack/fileutils-3.16-to.

The name of a SEPP package is made up from 3 components which are
separeted by a dashes: application-version-maintainer

application is the name of the application which is to installed as a package.
(emacs, gimp, fileutils, . . .)

version is the version number of the application. (22.1, 0.99b2, . . .)

maintainer stands for the initials of the package maintainer. (to, ak, fz, . . .)

When seppadm prepare has setup the directory it starts an application
install environment. This is a tcsh providing a controlled environment, so that
the installed package does not unintentionally tie itself to some package which
is installed locally, but might not be available on another system. Section 8 has
some additional hints on this subject. The fileutils package should be compiled
and installed with the installation root set to /usr/pack/fileutils-3.16-to.

After compiling and installing the GNU file utilities, the SEPP specific files
in /usr/pack/fileutils-3.16-to/SEPP must be adapted to the package. The
seppadm tool has already placed the following template files into the SEPP di-
rectory:

INSTALL: free form transcript of what was necessary to get the package to com-
pile and install properly. Appendix C.1 gives an example for GNU File
Utilities.

CHANGES: list of all the modifications done to a package after it was first in-
stalled. See appendix C.2 for an example.

README: brief description of what the package does. The file has to be in a
defined format because it gets converted to html for inclusion into the
SEPP Application Catalog. In appendix C.3 is a copy of the README
template file which contains instructions how to write a README file in
the format required by SEPP.

start.pl: startup wrapper for the package. It is responsible for preparing an
adequate environment for running the application. For well behaved appli-
cations this script is very simple, as all it has to do is to start the binary.
For other applications it might be necessary to set certain environment
variables or copy startup files to the users home directory. The template
start.pl in appendix C.5 explains the basics needed to know when writ-
ing startup wrappers. The startup wrappers have to be written in Perl.
To make this process as simple as possible a few special Perl functions
for “SEPP startup wrapper writing” are available in these scripts. See
appendix D for a manual page explaining these commands in detail.

8

patch: directory for storing patch files. If extensive modifications are necessary
to certain parts of the package in order to get it to work, the necessary
patches should be copied into this directory.

META: file where seppadm expects to finds a meta information about the pack-
age. The version number, related URLs, the email address of the package
maintainer, a one line description of the package and information about
which binaries should be available to the end user. In appendix C.4 is a
copy of the standard META template.

7.2 Installing a SEPP package

Once a package is prepared, the actual SEPP installation process is very simple:

seppadm install fileutils-3.16-to

Everyone who has /usr/sepp/bin in the PATH should now be able to use
the gnu file utilities.

Note, that you might have to use the option --default if this is a new
version of a package you have already installed. Don’t forget to update your
SEPP website with seppadm webbuild .

8 Package compilation tips

Installing a package can be tricky sometimes. Above all one has to avoid system
dependencies. Packages should run even when they are started on a system
which has no other software available besides the SEPP package and a regular
OS installation. The following tips are somewhat Solaris specific because this
is the main platform used by the author. The basic principal will be the same
on any other system.

8.1 Use only standard system binaries

Some packages use external utilities when they run. If the package comes from
the Linux world, it is likely that it expects to find the GNU versions of the
utilities. If the GNU version of a utility happens to be available on the local
system, maybe even installed under the same name as the original version from
the vendor, the package will run quite happily. But when the application started
on another host with stock vendor utilities, things will fail badly.

One step to prevent such problems is the install environment provided by
seppadm . It changes the PATH so that the directories /usr/bin, /usr/sbin
and friends come first. If the package looks for certain utilities at install time
and then stores their location with absolute pathnames, it will find the system
default binaries and use these. If the package insists on using the GNU variant
of a utility, it should be copied into the package. One of the guiding principals
here should be that disk space is not an issue.

If a large external package is required, it should be provided as a separate
SEPP package and then listed in the META file of the package that requires it.

9

8.2 Shared library search path

Modern applications often use shared libraries. These libraries are linked to the
application binary at startup time. If the loader can not find the shared library
at startup time the application will not be able to run. There are two ways
to inform the loader where to find the libraries. The preferred one is to hard
code the location of the library files into the application binary3. This can be
achieved by specifying the shared library directory with the -R option on the
compiler command line.

gcc -R/usr/pack/gimp-0.99.27-to/lib ...

Instead of giving the -R option on the command line, the LD RUN PATH environ-
ment variable can be set to point to the library location.

For precompiled binaries which can not find their libraries, the environment
variable LD LIBRARY PATH must be set in the start.pl script of the application.

The command ldd can be used to debug problems with shared libraries
because it can list all the libraries required by a binary.

8.3 Avoid name clashes

When using seppadm to install a package, it will automatically check that the
names of the installed programs do not clash with any of the binaries installed in
the default OS binary directories and with binaries from other SEPP packages.

8.4 configure

Today, many programs are quite easy to install thanks to GNU autoconf. Nev-
ertheless there are a few points to observe. Because autoconf can lead to appli-
cation binaries which are much too tightly bound to one system to run reliably
on another system. Before configure is started, a few environment variables
can be set to guide configure in the right direction.

• If the package needs special include files and libraries or compiler and
linker flags, those can be defined by setting the CPPFLAGS, CFLAGS and
LDFLAGS environment variables.

setenv CPPFLAGS "-I/usr/pack/gtk-1.0.0-to/include"
setenv CFLAGS "-O2"
setenv LDFLAGS "-L/usr/pack/gtk-1.0.0-to/lib \

-R/usr/pack/gtk-1.0.0-to/lib"

• The compiler can be chosen by setting the CC or CXX variable:

setenv CC egcc; setenv CXX eg++

Further configuration of configure is possible by specifying command line
switches . . .

3SEPP packages will always be installed under the /usr/pack path which makes this hard
coding very convenient

10

• Every package in SEPP should be installed under a separate subdirectory
tree. The option --prefix=/usr/pack/package of ./configure defines
this.

• GNU applications often duplicate the functionality of “official” system
utilities. By default they even use the same names for their binaries as
the vendors do for theirs. seppadm will refuse to install such programs
as explained before. With the option --exec-prefix=g the configure

program will create Makefiles which prepend the letter ‘g’ to the normal
name of each binary in the package. This makes gls out of ls .

• If X11R6 is installed on the system in addition to the X11 setup provided
by the vendor. It should be ensured that the SEPP pack uses the vendor
libraries4 and not the local X11R6 installation as it can not be assumed
that X11R6 is installed on every system. So far we have not found a pro-
gram which strictly required X11R6 libraries. To make sure configure

uses the vendors X11 libraries the --x-includes and --x-libraries pa-
rameters can be used. In a Solaris environment they would be set to
--x-includes=/usr/openwin/include and
--x-libraries=/usr/openwin/lib

8.5 Access Control

If an application requiring a license file or license number is installed as a SEPP
package, this information should not be included in the actual package directory.
The SEPP package might be shared with people who do not share the same
licenses. Most importantly no environment pointing to a license server, should
be set in the start.pl file of the package, as this file will be visible on the local
SEPP Application Catalog web site.

This problem is solved by using the vartmpl parameter in the META file
of the package to setup a template directory containing a dummy license file
or a little Perl fragment containing the name of the license server. When the
application is installed, the contents of this template directory is copied into
the /usr/sepp/var/ tree. The local system manager can then edit these files
to contain real data. For environment variables, a line like

do "$PackVar/licvar.pl";

can be used in the start.pl script. The licvar.pl file would then contain the
code necessary to set the license server environment variable. If the application
expects to find a license file somewhere inside its own directory tree, this file
can be replaced by a symbolic link pointing to a location in the /usr/sepp/var
tree.

A The seppadm Manual Page

All SEPP administration tasks can be performed with the seppadm utility. The
manual page below explains in detail the functions of this tool.

4/usr/openwin/ in the case of Solaris

11

NAME
seppadm - SEPP package administration tool

SYNOPSIS
seppadm prepare [pathname/]package [--noshell]
seppadm install package [--default]

seppadm remove package [--final]

seppadm mirror package

seppadm mirrorupdate

seppadm report [--datesort]

seppadm webbuild

DESCRIPTION
The seppadm command is used to administer software
packages within the SEPP system. Its primary functions
are: installing and removing packages, preparing
directories for package installation, mirroring packages
from other servers, list available packages, maintain
the SEPP Application Catalog web site with information
on the available packages and keeping the local mirrors
up to date.

prepare [pathname/]package
Creates a skeleton package directory. seppadm
will automatically choose the filesystem with
the most free space. By specifying a pathname,
this automatic choice can be overridden.

The package name must have the format
application-version-maintainer. The package
directory will become visible as
/usr/pack/package. This directory will
contain one subdirectory called SEPP which
contains a number of template files. These
templates have to be edited to fit the
package.

When the prepare function completes, it will
execute an ’install shell’ which provides a
controlled environment for application
compilation and installation.

install package [--default]
Installing a package means two things: First
the binaries get linked into the /usr/sepp/bin

12

directory and second, the application gets
listed in your packlist and can therefore be
installed on cooperating systems.

remove package [--final]
Removes a package from the system. Without the
option --final the package does not get
removed for real. It just gets earmarked, so
that people who still use the package get a
warning, telling them that the package is
going to be removed soon. The option --final
removes the package for real.

mirror package
Create a local copy of a package. This is to
increase reliability and performance.

mirrorupdate
Verifies that all local mirrors are up to
date.

report [--datesort]
Generates a list of available packages using
information from all linked servers.

webbuild regenerates the local web site.

BUGS
No Idea ... But if you tell me I’ll fix ’em.

AUTHOR
Tobias Oetiker <oetiker@ee.ethz.ch>

B SEPP System File Examples

SEPP is configured via several text files. Some are global and some are specific
to each SEPP package.

B.1 /usr/sepp/conf/sepprc.system

This file gets read whenever a SEPP application is started. Its contents can be
accessed in the startup wrapper script.

###
Global config file for all sepp wrapper scripts. The values
defined in here are available in the start.pl wrapper scripts
to allow the proper configuration of some values which are
not easily determined otherwhise. See the SeppStart manpage

13

for more information on this.
###

Used as a marker in sepp syslog events. Should identify
local installation.
$seppdomain = ’isg-net’;

general configuration values which can be used from
start.pl files by prepending $CF:: to the variable name
for ex: $CF::maildomain.

$maildomain = ’stud.ee.ethz.ch’;
$inetdomain = ’ee.ethz.ch’;
$httpproxy = ’proxy.ee.ethz.ch:3128’;
$ftpproxy = ’proxy.ee.ethz.ch:3128’;
$popserver = ’pop.stud.ee.ethz.ch’;
$imapserver = ’imap.stud.ee.ethz.ch’;
$smtpserver = ’smtp.stud.ee.ethz.ch’;

B.2 /usr/sepp/conf/sepp.conf

This is the main configuration file for seppadm .

###
Main configuration file for the SEPP installation
It is read by seppadm
###

*** local server ***
the name of the local sever and the path to the local
packlist. The packlist is a file which is maintained by the
seppadm tool. It contains information about all the packages
available on this server

drwho.ee.ethz.ch /usr/drwho/pack-b/SEPP.packlist

*** remote server ***
seppadm can mirror and install packages from remote servers.
If a package is available from multiple servers, the auto-mounter
will be configured to automatically pick the best available
machine. The number in braces after the host name defines the
preference of the host. The lower the number the higher the
preference. The packlists of the remote servers must be
mounted locally. Seppadm will NOT automount them ...

nariworkserv.ethz.ch(3) /net/nariworkserv.ethz.ch/export/pack/SEPP.packlist
#min.ethz.ch(2) /net/min.ethz.ch/export/pack/SEPP.packlist
lunghin.ee.ethz.ch(2) /usr/lunghin/r2/pack/SEPP.packlist
goomba.ethz.ch(2) /usr/goomba/local2/sepp/SEPP.packlist

14

*** preferred operating system ***
seppadm will only let you install packages which are
available for the OS configured on this line.
solaris

*** sepp user ***
seppadm will only run as this user. If you run seppadm as root,
it will try to become this user. It is sensible NOT run run seppadm
as root. And this runeable ensures this ...

local

*** sepp disks ***
when preparing a package, seppadm tool will automatically
pick one of the disks listed below, choosing the one with the
most space available.

/usr/drwho/pack-a
/usr/drwho/pack-b
/usr/drwho/pack-c
/usr/drwho/pack-d

*** compile shell ***
The application preparation environment is configured to use
tcsh but for strong minded people this can be configured
here.
/usr/sepp/sbin/tcsh

*** compile env ***
these lines define the environment variables which will be
set when the compile shell is started. In the example below
the HOME variable gets set to /usr/sepp/conf where a .cshrc
file is located which will be sourced when the shell starts.
#
The lines below may contain special keywords in curly braces.
these will be replaced by their real values when seppadm
starts the shell. {SEPP} = /usr/sepp, {PATH} = $PATH,
{HOME} = $HOME {PACKDIR} = /usr/pack/app-vers-maint

OPATH=/usr/bin:/usr/ccs/bin:/usr/openwin/bin:/usr/sbin:\
/usr/sepp/bin:/usr/sepp/sbin:{PATH}

ORPATH =/usr/openwin/bin
OHOME={HOME}
HOME={SEPP}/conf
PACK={PACKDIR}

###

15

C Package Config Files

Every SEPP package contains a SEPP subdirectory. In this directory, a few files
must be present. Templates for these files are copied to the SEPP directory by
seppadm .

C.1 /usr/pack/fileutils-3.16-to/SEPP/INSTALL

This is an example install transcript file. The example file is from the GNU file
utilities mentioned earlier in this paper.

seppadm prepare fileutils-3.16-to

* get source and unpack

* because fileutils contains tools which have the same
name as standard system tools (ls,mv,...) I used the
--program-prefix=g option. It prepends the letter g
to all executable names (gls,gmv,...) and therefor prevents
naming clashes.

./configure --prefix=/usr/pack/fileutils-3.16-to \
--program-prefix=g --disable-nls

gmake
gmake install

* update the files in /usr/pack/fileutils-3.16-to/SEPP

seppadm install fileutils-3.16-to

C.2 /usr/pack/fileutils-3.16-to/SEPP/CHANGES

Every change made to the package after it is installed should be documented in
this file. Apart from telling what changes have been made, the CHANGES file is
also used to determine if a mirror has to be updated or not.

*** history ***
1998-03-13 Package Prepared

C.3 /usr/sepp/conf/template/README

The text of this file will show up in the SEPP Application Catalog web site.

REMOVE THIS LINE WHEN YOU HAVE EDITED THIS FILE

############################
Description of the package
############################

Type a longer description of the package and possibly some

16

information for new users on how to get started with the
program and how further help can be obtained.

In order to make it simple to parse this text please follow
these guidelines when writing the README file.

* separate paragraphs by one empty line.
* lists should look like this
* to _emphasize_ a word add a underscore to the begin and

the end of the word.

1.) enumerated lists look
2.) like this

lines starting with a hash are comments and will be ignored.

Mark |commands| with vertical bares. They force
a typewriter font when the README is converted to HTML.

###

C.4 /usr/sepp/conf/template/META

When a package gets installed, removed or documented on the website, seppadm
needs some to know some details about the package. This information is stored
in the META file.

REMOVE THIS LINE WHEN YOU HAVE EDITED THIS FILE
#
###
The META file contains structured information about the
package. It is read by seppadm whenever some operation is
performed on this package.
###
#
all the values shown below are dummy entries which should
explain what to write into the fields they must be
adapted to fit the installed package. Lines starting with a
hash (#) are ignored by seppadm.
#
*** package name ***
The full name of the package
#
*** package version ***
version.number
#
*** one line description ***
type a ONE LINE description of the package (max 60 char)
#
*** maintainer ***

17

Email Address <of@the.maintainer>
#
*** local support ***
Address Of <local@person.who.can.help.with.this.package>
Address Of <other@local.person.who.helps>
#
*** license ***
pick one of the following licensing schemes
#
Unlimited use within the organization (site license)
unlimited
#
Limited number of licenses available
limited
#
This product is available for free. It does not mean
that this is an Open Source product, only that no licensing
restricts the distribution of this product through SEPP.
free
#
*** license contact ***
Who to contact <if@the.licenses.run.out>
#
*** urls ***
Important urls for this package - tutorials, home page. This
information will be listed in the SEPP Application List
web site.
Homepage
FTP Home
#
*** operating system ***
which OSes are supported by the package. The examples given below are
the minimal requirement, but perferably you should enter the exact
type of os you are runnning. Eg: ’solaris-2.5.1 sparc sun4u’ or
’hpux-10.20 9000 735’
sunos
solaris
hpux-9
hpux-10
aix-3
aix-4
linux
ofs1
irix-5
irix-6
irix64
#
*** categories ***
pick the categories that apply to the package
system

18

sci&eng
programming
internet
graphics
multimedia
fun
text
office
#
*** binaries ***
list of binaries provided by the package. The file name part
may contain a regular expression the path part is relative to
the installation root of the package
bin/demo.+
normally SEPP starts its apps through a wrapper script. With
interpreter languages, which are referenced in
#!/usr/sepp/bin/lang scripts-headers this does not work. Use
’>>’ as a prefix to make SEPP omit the wrapper layer for
certain binaries.
>>bin/perl
#
*** manpages ***
the same procedure as for binaries applies to manpages
man/man1/.+
man/man5/.+

*** vartmpl ***
the contents of the specified directory will be copied to
/usr/sepp/var/packname-ver.sion-maint. The package has to
take care that symbolic links point to this directory where
appropriate.
template
#
*** html doc root ***
this directory will be linked with a symlink into the
/usr/sepp/html tree. It must at least contain an index.html
file
html
#
*** depends on ***
when installing this package, seppadm will verify that the
packages mentioned in this section are also installed on the
local system. Package dependencies should be prevented
whenever possible.
miracles-1.45.2-ak
#
*** alarm ***
the alarm feature (not implemented) will make sepp send a
mail to the person mentioned at the date specified. This can
be used to notify the maintainer of the package about a

19

license which will soon expire ...
YYYY-MM-DD email address <to@send.mail.to> contents of mail
#
###

C.5 /usr/sepp/conf/template/start.pl

The App* and Env* commands shown in this template are not normal Perl
commands. They are only available in SEPP startup scripts!

REMOVE THIS LINE WHEN YOU HAVE EDITED THIS FILE

The start.pl file is written in Perl. Apart from standard
Perl you can also use the additional commands provided by
SeppStart.pm. Read ’man SeppStart’ for detailed information.

The variable $Pack contains the SEPP name of the current
package. $PackDir is the pathname to the installation
directory of the current package and $PackVar is the path to
the SEPP var directory of the package if such directory
exists.

DO NOT put things like license server names into this file
as its contents will be available on the SEPP web site. The
same holds true for all other files in the SEPP directory.

Fix the contents of some well known environment variables.
These lines are only examples of what could be done. A
well behaved application does not need any of these ...
PreENV prepends the arguments to the contents of the
environment variable and separates it with a ’:’

#PreENV "PATH", "/usr/bin";
#PreENV "XFILESEARCHPATH", "$PackDir/xresources/%N";
#PreENV "LD_LIBRARY_PATH", "$PackDir/lib";

The SetENV command (re)defines the value of an environment
variable.

#SetENV "LD_LICENSE_FILE", "$PackVar/license.dat";

Here comes the heart of the start.pl script

One of the two App* commands has to stand at the end of the
script. It starts the application binary which the user
wanted to run in the first place. The argument after the App*
command has to point to the directory where the application
binaries are stored.
#

20

The difference between AppRun and AppExec is that AppRun uses
system to start the application and AppExec uses exec. While
AppRun lets the wrapper wait until the application ends,
AppExec just execs the application, replacing the wrapper
job.
#
Because AppRun waits until the application terminates, it can
then write an entry to the SEPP log, telling how long the
application has been running and what it’s exit code was.
AppExec just logs the fact that the application is going to
be started.

AppRun "$PackDir/bin";
AppExec "$PackDir/bin";

###

D SeppStart.pm Manual Page

As mentioned above there are a few special commands available when writing
start.pl wrappers. This is the manual page explaining these commands.

NAME
SeppStart.pm - SEPP startup wrapper Module

SYNOPSIS
PreENV EnvVar, Value, Value ...

SetENV EnvVar, Value

AppRun BinaryPath

AppExec BinaryPath

$Pack, $PackDir, $PackVar

DESCRIPTION
This module provides a number of functions for creating
SEPP/start.pl wrappers.

PreENV EnvVar, Value, Value ...
Prepends the Value to the current contents
of EnvVar, using the ’:’ as a separator.
‘PreENV "PATH", "/usr/sbin"’

SetENV EnvVar, Value
Set EnvVar to Value

AppRun BinaryPath

21

Run the application specified through the
contents of $0. The argument must point to the
directory where the application binaries are
installed inside the pack. This command should
be used at the end of every start.pl script to
launch the actual application. It will also
write an entry to the sepp syslog facility
local_4 when the application terminates.
Giving details on runtime and exitcode of the
application.

AppExec BinaryPath
Works the same as AppRun, but the application
is started via exec. This takes less memory,
but the log entry will neither contain the
runtime nor the exitcode of the application.

$Pack, $PackDir, $PackVar
These three variables can be used in the
start.pl file to simplify to make the wrappers
portable ...

BUGS
No Idea ... But if you tell me I’ll fix ’em.

AUTHOR
Tobias Oetiker <oetiker@ee.ethz.ch>

22

	Motivation
	Goals
	Existing Solution
	SEPP Features
	User visible Features
	Making the System Managers happy

	Implementation
	SEPP Setup
	Using unhbox voidb @x hbox {seppadm}
	Preparing a SEPP package
	Installing a SEPP package

	Package compilation tips
	Use only standard system binaries
	Shared library search path
	Avoid name clashes
	unhbox voidb @x hbox {configure}
	Access Control

	The unhbox voidb @x hbox {seppadm} Manual Page
	SEPP System File Examples
	unhbox voidb @x hbox {/usr/sepp/conf/sepprc.system}
	unhbox voidb @x hbox {/usr/sepp/conf/sepp.conf}

	Package Config Files
	unhbox voidb @x hbox {/usr/pack/fileutils-3.16-to/SEPP/INSTALL}
	unhbox voidb @x hbox {/usr/pack/fileutils-3.16-to/SEPP/CHANGES}
	unhbox voidb @x hbox {/usr/sepp/conf/template/README}
	unhbox voidb @x hbox {/usr/sepp/conf/template/META}
	unhbox voidb @x hbox {/usr/sepp/conf/template/start.pl}

	SeppStart.pm Manual Page

